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fitted versus the degree of weighting one can evaluate the 
importance of multiple scattering and its effect on the 
calculated parameters. Also, one can determine the relative 
reliability of data from different positions in reciprocal space. 
Because this method is so simple and powerful it is 
unquestionably the preferred approach. 

It is presumably possible to treat the problem analogously 
to its treatment for Compton scattering although it is much 
more complex. A considerable computational effort would 
also be required (Halonen et al., 1976). Our conclusion is 
that this approach is so difficult and subject to such 
uncertainties that it surely should be avoided. It should be 
pointed out that in certain cases, as for Compton scattering, 
multiple scattering cannot be eliminated so corrections are 
necessary; whereas, for diffuse scattering from crystalline 
solids, the data that are used need not be degraded by this 
effect. 

In summary, I have shown that multiple-scattering 
processes are important in diffuse-scattering measurements. 
Data reduction by a multiple-regression analysis can handle 
the problem most satisfactorily. 
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Abstract 

Simple models for the thermal expansion of erbium, and for 
deducing the magnetic energy from the specific heat, are 
shown to give an approximate account of the facts. Values 
are given for the energy of magnetic ordering and the 
magnetic entropy. 

1. Introduction 

The heavy rare-earth metal erbium exhibits a rather complex 
magnetic ordering at low temperatures, which has a pro- 
nounced effect on the specific heat. Below a Nbel point at 85 
K the moments vary sinusoidally along the c axis, and below 
about 53 K the moments in the basal plane develop a 
helicoidal ordering. Er is ferromagnetic below 20 K, the 
helical arrangement of the spins in the basal plane being 
retained. 

We present here calculations for erbium using the nearest- 
neighbour central-force model proposed by Srinivasan & 
Ramji Rao (1965), which has earlier been employed to study 
the lattice dynamics and thermal expansion of erbium (Ramji 
Rao & Ramanand, 1977). We compute the variation of the 
lattice parameters with pressure and find good agreement 
with experiment. We then determine the lattice heat capacity 
using the central-force model. Subtracting this, and an 
estimate of the electronic heat capacity, from the specific 
heat as determined experimentally we obtain a magnetic con- 
tribution. This in turn has been used to calculate the total 
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energy of magnetic ordering, the magnetic contribution to 
the change in entropy due to ordering and an effective 
exchange parameter of Er. 

2. Effect of hydrostatic pressure on the lattice parameters 
and volume of erbium 

We have followed the method suggested by Thurston (1967) 
who has derived an expression for the change in the lattice 
parameter with application of pressure. The usual expression 
obtained by truncating the power series after the quadratic 
term is not suitable for extrapolation beyond a few tens of 
kilobars. 

Thurston's extrapolation formula for the principal 
stretches ;I. i (i = 1, 2, 3), which is consistent with a linear 
pressure dependence of the bulk modulus, is 

X t = (B/Bo)-S2oY,o/~S'o)2 exp [(a I + BoYto/B~)P]. (2.1) 

For a uniaxial crystal ;I.~ = 22 = 2j and X 3 = 2,, and 
equation (2.1) can be written for the two cases: 

a/a o = 2± = (B/Bo) -8gy~°/fB'°)' exp [(a± + BoY±o/B~)P], 

C/Co = ~.u = (B/Bo) -8~y °1c8'~2 exp [(a, + BoYllo/B'o)P]. (2.2) 

a/ao and c/c o are the compression ratios of the lattice 
parameters, B is the bulk modulus at pressure P, B 0 and 
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B~ are the bulk modulus and its pressure derivative respec- 
tively at zero pressure. In equation (2.2) 

B o = - -1 / (2a±  + a,);  B~ = B~(2Y~0 + Y,0), 

Yl0 = b± - a2; Ylto = b , -  a~, (2.3) 

where 

a L = - $ 1  = - ( S n  + $12 + S13), 
a, = - - S  3 = - - ( 2 S 1 3  4- $33), 

b± =S~ + (SII 4- SI2)Q 1 + S13Q3 , 

btl = S] + 2S13 QI + $33 Q3. (2.4) 

In equation (2.4) 

QI = S](fl]] + fl~2) + $3fl]3; Q3 = 2Sxfl]3 + $3fl[3. (2.5) 

Here S U are the elastic compliance coefficients and the fl'u 
are the pressure derivatives of the effective elastic 
coefficients. The theoretical TOE constants obtained using 
the CF model have been used to calculate the fl~j values 
(Ramji Rao, 1975; Ramji Rao & Srinivasan, 1968, 1969). 

The volume compression ratio is given by 

V/V o - (2.L) 2 ~,,, = (I + PB'o/Bo) -'/B~'. (2.6) 

We have calculated a/a o, c/c o and V / V  o for erbium as a 
function of pressure up to 10 ~° Pa using the parameters of 
Table 1, and the results are presented in Fig. 1, together with 
compression data published by Perez Albuerne, Clendenen, 
Lynch & Drickamer (1966). 

There is remarkably good agreement between the cal- 
culated values and experiment. Moreover, the calculated 
values of c/c o and a/a o are very nearly equal, which means 
that the axial ratio is very nearly independent of pressure, 
again as observed. 

Table 1. Parameters used to calculate the compression o f  Er 

a± a, b i b, Bo B'o 
(10 n Pa)-' (10" Pa)-' (10 n Pa) -z (10" Pa) -2 (10" Pa) 

-0.701 -0.798 5.149 7.293 0.4545 3.30 

bOO 

0-98 . ~ ~ ; ~  

0.96 ~ " , - " ~ " 7 " ~  

0-94 

0.92 . . ~  

0'90 1 " ~  

°- I °'"[ 
0-84~ 10 210 310 40 510 60 70 810 9t0 l~10x I~ Pa 

Fig. 1. Pressure dependence of the lattice parameters and volume 
oferbium. • experimental values. 

3. Calculation of the lattice heat capacity 

The frequency distribution function required to calculate the 
lattice specific heat was obtained by a root-sampling 
technique. The secular equation for the vibrational frequen- 
cies has been solved at 484 points in the irreducible volume 
of the Brillouin zone. This amounts to using a total of 50 880 
frequencies, which are then employed to construct a 
histogram for g(og). In the low-frequency range, where the 
sampling technique provides too few frequencies to produce 
a reliable curve, the formula g(og) = Co) 2 was used with a 
value of C obtained from the average of Y~ = ] V f  3 (0, ~o) over 
all directions, where Vj (0, ~0) is the acoustic wave velocity of 
the j th  mode propagating along the direction (0, q~). 

The temperature dependence of the effective Debye tem- 
perature obtained using the calculated lattice specific heat is 
shown in Fig. 2. It is similar to that observed for other rare- 
earth metals, and the high-temperature limit obtained with 
this model is in reasonably good agreement with the value of 
163 K quoted by Gschneidner (1964). 

4. Magnetic contribution to the specific heat 

The specific heat of Er has been measured between 3 and 25 
K by Lounasmaa & Sundstr6m (1966) and between 15 and 
300 K by Skochdopole, Grifel & Spedding (1955). It exhibits 
a ,1.-type peak at 85 K and a symmetrical peak at 20 K. 
Between these two temperatures the specific heat rises rather 
non-uniformly, with a rounded maximum at 54 K. 

In analysing the specific-heat data of the rare-earth metals, 
it is necessary to consider the lattice contribution C~, the 
magnetic contribution C~', the electronic contribution C e, 
and finally the thermodynamic correction JC. Thus 

C p = C ~ + C ~ + C  e+&C (4.1) 

(see, for example, Hofmann, Paskin, Tauer & Weiss, 1956). 
The Cp data of Er measured by Skochdopole, Grifel & 

Spedding (1955) was first converted to C v using the thermo- 
dynamic relation 

where 
Cv= C v ( 1 -  ACvT),  (4.2) 

A = 9a 2 V/xC 2. (4.3) 

170f ,16o.f  
150 f 

i 1400 20 40 0 8t0 I t i i 6 100 120 140 160 T(K) 
Fig. 2. O 0 vs T for erbium, obtained from the theoretical lattice 

heat capacity. 
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The dilation-correction constant A is usually found to be 
practically independent of temperature; hence the room- 
temperature value of A quoted by Gschneidner (1964) was 
used at all temperatures. 

The electronic contribution C~ was determined as yT 
using the y quoted by Lounasmaa & Sundstr6m (1966). 

A curve showing the magnetic specific heat for Er derived 
from (4.1), together with a magnetic entropy curve, is shown 
in Fig. 3. The energy W of magnetic ordering - the energy 
required to take the spin system from the magnetically 
ordered state to the magnetically disordered state - is given 
by the total area under the magnetic specific-heat curve. The 
total area under the Cm/T vs T curve gives the total entropy 
gain in the transition from the ordered state to the dis- 
ordered state. Our values for W and the entropy gain Smag 
are presented in Table 2. 

The value of Smag determined from the present analysis is 
in fair agreement with the theoretical value, R ln(2S + 1). 
However the value of Smag quoted by Rhyne (1972) obtained 
using a Debye model (O D = 191 K) is materially higher than 
the theoretical value. 

To gain some feeling for the significance of W we may 
crudely make use of a simple Heisenberg model with an 
exchange integral J between nearest-neighbour spins only. 
Then the interaction energy Vlj = --2JS~. S j, and the energy 
of magnetic ordering W is given by 

W = N Z S  2 I J I, (4.4) 

where N is the number of magnetic atoms in the crystal, Z is 

Table 2. Results obtained from the analysis of  the specific 
heat o f  Er 

Magnetic entropy, Smag 
(J mol -l K-I) 

W Present From 
(J mol -l) analysis R In (2S + 1) Rhyne (1972) 

832 20.9 23.0 25.2 

16-8 

14.7 

12.6 

i 10.5 
8.4 

6.3 
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Fig. 3. Magnetic specific heat (C m) and magnetic entropy (C~/T) 
curves for erbium. 

the number of nearest magnetic neighbours, and S is the 
atomic spin. If we also use the elementary formula (Van 
Vleck, 1941) 

J / k T  c = 3/2 Z S ( S  + 1), (4.5) 

we find that 

W / N k T  c = 3 S / 2 ( S  + 1). (4.6) 

Equation (4.5) does not, of course, give a particularly 
satisfacatory way of determining an effective interaction 
parameter; but, in fact, with S = 15/2 and Tc = 85 K it gives 
J = 0-014 meV where our W in (4.4) gives 0.013 meV, and 
so it has the merit of consistency. (4.6) predicts W/NkT~ = 
1.32, where the value obtained from our analysis is I. 17. 

5. Conclusions 

Our nearest-neighbours-only central-forces model of erbium 
is quite successful in explaining the compression data. The 
agreement is sufficiently good to inspire some confidence in 
the theoretical third-order elastic constants. The model also 
yields a magnetic contribution to the total specific heat in 
reasonable accordance with results deduced from other inde- 
pendent methods. 
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